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ABSTRACT
We attempt to apply the technique of Tracing JIT Compilers
in the context of the PyPy project, i.e., to programs that are
interpreters for some dynamic languages, including Python.
Tracing JIT compilers can greatly speed up programs that
spend most of their time in loops in which they take similar
code paths. However, applying an unmodified tracing JIT
to a program that is itself a bytecode interpreter results in
very limited or no speedup. In this paper we show how to
guide tracing JIT compilers to greatly improve the speed
of bytecode interpreters. One crucial point is to unroll the
bytecode dispatch loop, based on two kinds of hints provided
by the implementer of the bytecode interpreter. We evaluate
our technique by applying it to two PyPy interpreters: one
is a small example, and the other one is the full Python
interpreter.

1. INTRODUCTION
Dynamic languages have seen a steady rise in popularity

in recent years. JavaScript is increasingly being used to im-
plement full-scale applications which run within a browser,
whereas other dynamic languages (such as Ruby, Perl, Python,
PHP) are used for the server side of many web sites, as well
as in areas unrelated to the web.

One of the often-cited drawbacks of dynamic languages is
the performance penalties they impose. Typically they are
slower than statically typed languages. Even though there
has been a lot of research into improving the performance
of dynamic languages (in the SELF project, to name just
one example [20]), those techniques are not as widely used
as one would expect. Many dynamic language implementa-
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tions use completely straightforward bytecode-interpreters
without any advanced implementation techniques like just-
in-time compilation. There are a number of reasons for this.
Most of them boil down to the inherent complexities of using
compilation. Interpreters are simple to implement, under-
stand, extend and port whereas writing a just-in-time com-
piler is an error-prone task that is made even harder by the
dynamic features of a language.

A recent approach to getting better performance for dy-
namic languages is that of tracing JIT compilers [18, 8].
Writing a tracing JIT compiler is relatively simple. It can
be added to an existing interpreter for a language, the inter-
preter takes over some of the functionality of the compiler
and the machine code generation part can be simplified.

The PyPy project is trying to find approaches to generally
ease the implementation of dynamic languages. It started as
a Python implementation in Python, but has now extended
its goals to be generally useful for implementing other dy-
namic languages as well. The general approach is to imple-
ment an interpreter for the language in a subset of Python.
This subset is chosen in such a way that programs in it
can be compiled into various target environments, such as
C/Posix, the CLI or the JVM. The PyPy project is described
in more detail in Section 2.

In this paper we discuss ongoing work in the PyPy project
to improve the performance of interpreters written with the
help of the PyPy toolchain. The approach is that of a trac-
ing JIT compiler. Contrary to the tracing JITs for dynamic
languages that currently exist, PyPy’s tracing JIT operates
“one level down”, i.e., it traces the execution of the inter-
preter, as opposed to the execution of the user program.
The fact that the program the tracing JIT compiles is in
our case always an interpreter brings its own set of prob-
lems. We describe tracing JITs and their application to in-
terpreters in Section 3. By this approach we hope to arrive
at a JIT compiler that can be applied to a variety of dy-
namic languages, given an appropriate interpreter for each
of them. The process is not completely automatic but needs
a small number of hints from the interpreter author, to help
the tracing JIT. The details of how the process integrates
into the rest of PyPy will be explained in Section 4. This
work is not finished, but has already produced some promis-
ing results, which we will discuss in Section 5.

The contributions of this paper are:

• Applying a tracing JIT compiler to an interpreter.

• Finding techniques for improving the generated code.



2. THE PYPY PROJECT
The PyPy project1 [24, 5] is an environment where flexible

implementations of dynamic languages can be written. To
implement a dynamic language with PyPy, an interpreter for
that language has to be written in RPython [1]. RPython
(“Restricted Python”) is a subset of Python chosen in such
a way that type inference can be performed on it. The lan-
guage interpreter can then be translated with the help of
PyPy into various target environments, such as C/Posix, the
CLI and the JVM. This is done by a component of PyPy
called the translation toolchain.

By writing VMs in a high-level language, we keep the
implementation of the language free of low-level details such
as memory management strategy, threading model or object
layout. These features are automatically added during the
translation process. The process starts by performing con-
trol flow graph construction and type inferences, then fol-
lowed by a series of steps, each step transforming the inter-
mediate representation of the program produced by the pre-
vious one until we get the final executable. The first trans-
formation step makes details of the Python object model
explicit in the intermediate representation, later steps intro-
ducing garbage collection and other low-level details. As we
will see later, this internal representation of the program is
also used as an input for the tracing JIT.

3. TRACING JIT COMPILERS
Tracing optimizations were initially explored by the Dy-

namo project [2] to dynamically optimize machine code at
runtime. Its techniques were then successfully used to imple-
ment a JIT compiler for a Java VM [18, 17]. Subsequently
these tracing JITs were discovered to be a relatively simple
way to implement JIT compilers for dynamic languages [8].
The technique is now being used by both Mozilla’s Trace-
Monkey JavaScript VM [16] and has been tried for Adobe’s
Tamarin ActionScript VM [9].

Tracing JITs are built on the following basic assumptions:

• programs spend most of their runtime in loops

• several iterations of the same loop are likely to take
similar code paths

The basic approach of a tracing JIT is to only generate
machine code for the hot code paths of commonly executed
loops and to interpret the rest of the program. The code for
those common loops however is highly optimized, including
aggressive inlining.

Typically tracing VMs go through various phases when
they execute a program: Interpretation/profiling, tracing,
code generation and execution of the generated code. When
the program starts, everything is interpreted. The inter-
preter does lightweight profiling to establish which loops are
run most frequently. This lightweight profiling is usually
done by having a counter on each backward jump instruc-
tion that counts how often this particular backward jump
is executed. Since loops need a backward jump somewhere,
this method looks for loops in the user program.

When a hot loop is identified, the interpreter enters a
special mode, called tracing mode. During tracing, the in-
terpreter records a history of all the operations it executes.
It traces until it has recorded the execution of one iteration

1http://codespeak.net/pypy

def f(a, b):
if b % 46 == 41:

return a - b
else:

return a + b
def strange_sum(n):

result = 0
while n >= 0:

result = f(result, n)
n -= 1

return result

# corresponding trace:
loop_header(result0, n0)
i0 = int_mod(n0, Const(46))
i1 = int_eq(i0, Const(41))
guard_false(i1)
result1 = int_add(result0, n0)
n1 = int_sub(n0, Const(1))
i2 = int_ge(n1, Const(0))
guard_true(i2)
jump(result1, n1)

Figure 1: A simple Python function and the
recorded trace.

of the hot loop. To decide when this is the case, the trace
is repeatedly checked as to whether the interpreter is at a
position in the program where it had been earlier.

The history recorded by the tracer is called a trace: it
is a list of operations, together with their actual operands
and results. Such a trace can be used to generate efficient
machine code. This generated machine code is immediately
executable, and can be used in the next iteration of the loop.

Being sequential, the trace represents only one of the many
possible paths through the code. To ensure correctness, the
trace contains a guard at every possible point where the
path could have followed another direction, for example at
conditions and indirect or virtual calls. When generating
the machine code, every guard is turned into a quick check
to guarantee that the path we are executing is still valid.
If a guard fails, we immediately quit the machine code and
continue the execution by falling back to interpretation.2

It is important to understand how the tracer recognizes
that the trace it recorded so far corresponds to a loop. This
happens when the position key is the same as at an earlier
point. The position key describes the position of the exe-
cution of the program, i.e., usually contains things like the
function currently being executed and the program counter
position of the tracing interpreter. The tracing interpreter
does not need to check all the time whether the position key
already occurred earlier, but only at instructions that are
able to change the position key to an earlier value, e.g., a
backward branch instruction. Note that this is already the
second place where backward branches are treated specially:
during interpretation they are the place where the profiling
is performed and where tracing is started or already existing
assembler code executed; during tracing they are the place
where the check for a closed loop is performed.

As a small example, take the (slightly contrived) RPython
code in Figure 1. The tracer interprets these functions in a
bytecode format that is an encoding of the intermediate rep-

2There are more complex mechanisms in place to still pro-
duce extra code for the cases of guard failures [17], but they
are independent of the issues discussed in this paper.



resentation of PyPy’s translation toolchain after type infer-
ence has been performed. When the profiler discovers that
the while loop in strange_sum is executed often the tracing
JIT will start to trace the execution of that loop. The trace
would look as in the lower half of Figure 1.

The operations in this sequence are operations of the above-
mentioned intermediate representation (e.g., the generic mod-
ulo and equality operations in the function above have been
recognized to always take integers as arguments and are thus
rendered as int_mod and int_eq). The trace contains all the
operations that were executed in SSA-form [13] and ends
with a jump to its beginning, forming an endless loop that
can only be left via a guard failure. The call to f is inlined
into the trace. The trace contains only the hot else case
of the if test in f, while the other branch is implemented
via a guard failure. This trace can then be converted into
machine code and executed.

3.1 Applying a Tracing JIT to an Interpreter
The tracing JIT of the PyPy project is atypical in that

it is not applied to the user program, but to the interpreter
running the user program. In this section we will explore
what problems this brings, and suggest how to solve them
(at least partially). This means that there are two inter-
preters involved, and we need appropriate terminology to
distinguish beween them. On the one hand, there is the in-
terpreter that the tracing JIT uses to perform tracing. This
we will call the tracing interpreter. On the other hand, there
is the interpreter that runs the user’s programs, which we
will call the language interpreter. In the following, we will
assume that the language interpreter is bytecode-based. The
program that the language interpreter executes we will call
the user program (from the point of view of a VM author,
the “user” is a programmer using the VM). Similarly, we
need to distinguish loops at two different levels: interpreter
loops are loops inside the language interpreter. On the other
hand, user loops are loops in the user program.

A tracing JIT compiler finds the hot loops of the program
it is compiling. In our case, this is the language interpreter.
The most important hot interpreter loop is the bytecode
dispatch loop (for many simple interpreters it is also the
only hot loop). One iteration of this loop corresponds to the
execution of one opcode. This means that the assumption
made by the tracing JIT – that several iterations of a hot
loop take the same or similar code paths – is wrong in this
case. It is very unlikely that the same particular opcode is
executed many times in a row.

An example is given in Figure 2. It shows the code of a
very simple bytecode interpreter with 256 registers and an
accumulator. The bytecode argument is a string of bytes,
all register and the accumulator are integers.3 A program for
this interpreter that computes the square of the accumulator
is shown in Figure 3. If the tracing interpreter traces the
execution of the DECR_A opcode (whose integer value is 7),
the trace would look as in Figure 4. Because of the guard
on opcode0, the code compiled from this trace will be useful
only when executing a long series of DECR_A opcodes. For
all the other operations the guard will fail, which will mean
that performance is not improved at all.

To improve this situation, the tracing JIT could trace the

3The chain of if, elif, ... instructions checking the various
opcodes is turned into a switch statement by one of PyPy’s
optimizations. Python does not have a switch statement.

def interpret(bytecode, a):
regs = [0] * 256
pc = 0
while True:

opcode = ord(bytecode[pc])
pc += 1
if opcode == JUMP_IF_A:

target = ord(bytecode[pc])
pc += 1
if a:

pc = target
elif opcode == MOV_A_R:

n = ord(bytecode[pc])
pc += 1
regs[n] = a

elif opcode == MOV_R_A:
n = ord(bytecode[pc])
pc += 1
a = regs[n]

elif opcode == ADD_R_TO_A:
n = ord(bytecode[pc])
pc += 1
a += regs[n]

elif opcode == DECR_A:
a -= 1

elif opcode == RETURN_A:
return a

Figure 2: A very simple bytecode interpreter with
registers and an accumulator.

MOV_A_R 0 # i = a
MOV_A_R 1 # copy of ’a’

# 4:
MOV_R_A 0 # i--
DECR_A
MOV_A_R 0

MOV_R_A 2 # res += a
ADD_R_TO_A 1
MOV_A_R 2

MOV_R_A 0 # if i!=0: goto 4
JUMP_IF_A 4

MOV_R_A 2 # return res
RETURN_A

Figure 3: Example bytecode: Compute the square
of the accumulator

loop_start(a0, regs0, bytecode0, pc0)
opcode0 = strgetitem(bytecode0, pc0)
pc1 = int_add(pc0, Const(1))
guard_value(opcode0, Const(7))
a1 = int_sub(a0, Const(1))
jump(a1, regs0, bytecode0, pc1)

Figure 4: Trace when executing the DECR_A opcode



execution of several opcodes, thus effectively unrolling the
bytecode dispatch loop. Ideally, the bytecode dispatch loop
should be unrolled exactly so much that the unrolled version
corresponds to a user loop. User loops occur when the pro-
gram counter of the language interpreter has the same value
several times. This program counter is typically stored in
one or several variables in the language interpreter, for ex-
ample the bytecode object of the currently executed function
of the user program and the position of the current bytecode
within that. In the example above, the program counter is
represented by the bytecode and pc variables.

Since the tracing JIT cannot know which parts of the lan-
guage interpreter are the program counter, the author of the
language interpreter needs to mark the relevant variables of
the language interpreter with the help of a hint. The trac-
ing interpreter will then effectively add the values of these
variables to the position key. This means that the loop will
only be considered to be closed if these variables that are
making up the program counter at the language interpreter
level are the same a second time. Loops found in this way
are, by definition, user loops.

The program counter of the language interpreter can only
be the same a second time after an instruction in the user
program sets it to an earlier value. This happens only at
backward jumps in the language interpreter. That means
that the tracing interpreter needs to check for a closed loop
only when it encounters a backward jump in the language
interpreter. Again the tracing JIT cannot know which part
of the language interpreter implements backward jumps, so
the author of the language interpreter needs to indicate this
with the help of a hint.

The language interpreter uses a similar technique to de-
tect hot user loops: the profiling is done at the backward
branches of the user program, using one counter per seen
program counter of the language interpreter.

The condition for reusing existing machine code also needs
to be adapted to this new situation. In a classical tracing
JIT there is no or one piece of assembler code per loop of the
jitted program, which in our case is the language interpreter.
When applying the tracing JIT to the language interpreter
as described so far, all pieces of assembler code correspond
to the bytecode dispatch loop of the language interpreter.
However, they correspond to different paths through the
loop and different ways to unroll it. To ascertain which
of them to use when trying to enter assembler code again,
the program counter of the language interpreter needs to be
checked. If it corresponds to the position key of one of the
pieces of assembler code, then this assembler code can be
executed. This check again only needs to be performed at
the backward branches of the language interpreter.

Let’s look at how hints would need to be applied to the
example interpreter from Figure 2. Figure 5 shows the rele-
vant parts of the interpreter with hints applied. One needs
to instantiate JitDriver by listing all the variables of the
bytecode loop. The variables are classified into two groups,
“green” variables and “red” variables. The green variables
are those that the tracing JIT should consider to be part
of the program counter of the language interpreter. In the
case of the example, the pc variable is obviously part of
the program counter; however, the bytecode variable is also
counted as green, since the pc variable is meaningless with-
out the knowledge of which bytecode string is currently be-
ing interpreted. All other variables are red.

tlrjitdriver = JitDriver(greens = [’pc’, ’bytecode’],
reds = [’a’, ’regs’])

def interpret(bytecode, a):
regs = [0] * 256
pc = 0
while True:

tlrjitdriver.jit_merge_point()
opcode = ord(bytecode[pc])
pc += 1
if opcode == JUMP_IF_A:

target = ord(bytecode[pc])
pc += 1
if a:

if target < pc:
tlrjitdriver.can_enter_jit()

pc = target
elif opcode == MOV_A_R:

... # rest unmodified

Figure 5: Simple bytecode interpreter with hints
applied

In addition to the classification of the variables, there are
two methods of JitDriver that need to be called. The first
one is jit_merge_point which needs to be put at the begin-
ning of the body of the bytecode dispatch loop. The other,
more interesting one, is can_enter_jit. This method needs
to be called at the end of any instruction that can set the
program counter of the language interpreter to an earlier
value.4 For the example this is only the JUMP_IF_A instruc-
tion, and only if it is actually a backward jump. Here is
where the language interpreter performs profiling to decide
when to start tracing. It is also the place where the tracing
JIT checks whether a loop is closed. This is considered to
be the case when the values of the “green” variables are the
same as at an earlier call to the can_enter_jit method.

For the small example the hints look like a lot of work.
However, the number of hints that need to be put into the in-
terpreter source remains small, which makes the extra work
negligible for larger interpreters.

When executing the Square function of Figure 3, the pro-
filing will identify the loop in the square function to be hot,
and start tracing. It traces the execution of the interpreter
running the loop of the square function for one iteration,
thus unrolling the interpreter loop of the example interpreter
eight times. The resulting trace can be seen in Figure 6.

3.2 Improving the Result
The critical problem of tracing the execution of just one

opcode has been solved, the loop corresponds exactly to the
loop in the square function. However, the resulting trace
is not optimized enough. Most of its operations are not
actually doing any computation that is part of the square
function. Instead, they manipulate the data structures of
the language interpreter. While this is to be expected, given
that the tracing interpreter looks at the execution of the
language interpreter, it would still be an improvement if
some of these operations could be removed.

The simple insight on how to improve the situation is
that most of the operations in the trace are actually con-
cerned with manipulating the bytecode string and the pro-

4The hints need to be written a bit differently in the actual
implementation for purely technical reasons.



loop_start(a0, regs0, bytecode0, pc0)
# MOV_R_A 0
opcode0 = strgetitem(bytecode0, pc0)
pc1 = int_add(pc0, Const(1))
guard_value(opcode0, Const(2))
n1 = strgetitem(bytecode0, pc1)
pc2 = int_add(pc1, Const(1))
a1 = list_getitem(regs0, n1)
# DECR_A
opcode1 = strgetitem(bytecode0, pc2)
pc3 = int_add(pc2, Const(1))
guard_value(opcode1, Const(7))
a2 = int_sub(a1, Const(1))
# MOV_A_R 0
opcode1 = strgetitem(bytecode0, pc3)
pc4 = int_add(pc3, Const(1))
guard_value(opcode1, Const(1))
n2 = strgetitem(bytecode0, pc4)
pc5 = int_add(pc4, Const(1))
list_setitem(regs0, n2, a2)
# MOV_R_A 2
...
# ADD_R_TO_A 1
opcode3 = strgetitem(bytecode0, pc7)
pc8 = int_add(pc7, Const(1))
guard_value(opcode3, Const(5))
n4 = strgetitem(bytecode0, pc8)
pc9 = int_add(pc8, Const(1))
i0 = list_getitem(regs0, n4)
a4 = int_add(a3, i0)
# MOV_A_R 2
...
# MOV_R_A 0
...
# JUMP_IF_A 4
opcode6 = strgetitem(bytecode0, pc13)
pc14 = int_add(pc13, Const(1))
guard_value(opcode6, Const(3))
target0 = strgetitem(bytecode0, pc14)
pc15 = int_add(pc14, Const(1))
i1 = int_is_true(a5)
guard_true(i1)
jump(a5, regs0, bytecode0, target0)

Figure 6: Trace when executing the Square function
of Figure 3, with the corresponding bytecodes as
comments.

gram counter. Those are stored in variables that are “green”
(i.e., they are part of the position key). This means that
the tracer checks that those variables have some fixed value
at the beginning of the loop (they may well change over the
course of the loop, though). In the example of Figure 6
the check would be that at the beginning of the trace the
pc variable is 4 and the bytecode variable is the bytecode
string corresponding to the square function. Therefore it
is possible to constant-fold computations on them away, as
long as the operations are side-effect free. Since strings are
immutable in RPython, it is possible to constant-fold the
strgetitem operation. The int_add are additions of the
green variable pc and a constant number, so they can be
folded away as well.

With this optimization enabled, the trace looks as in Fig-
ure 7. Now much of the language interpreter is actually gone
from the trace and what is left corresponds very closely to
the loop of the square function. The only vestige of the lan-
guage interpreter is the fact that the register list is still used
to store the state of the computation. This could be removed

loop_start(a0, regs0)
# MOV_R_A 0
a1 = list_getitem(regs0, Const(0))
# DECR_A
a2 = int_sub(a1, Const(1))
# MOV_A_R 0
list_setitem(regs0, Const(0), a2)
# MOV_R_A 2
a3 = list_getitem(regs0, Const(2))
# ADD_R_TO_A 1
i0 = list_getitem(regs0, Const(1))
a4 = int_add(a3, i0)
# MOV_A_R 2
list_setitem(regs0, Const(2), a4)
# MOV_R_A 0
a5 = list_getitem(regs0, Const(0))
# JUMP_IF_A 4
i1 = int_is_true(a5)
guard_true(i1)
jump(a5, regs0)

Figure 7: Trace when executing the Square function
of Figure 3, with the corresponding opcodes as com-
ments. The constant-folding of operations on green
variables is enabled.

by some other optimization, but is maybe not really all that
bad anyway (in fact we have an experimental optimization
that does exactly that, but it is not yet finished). Once we
get this optimized trace, we can pass it to the JIT backend,
which generates the corresponding machine code.

4. IMPLEMENTATION ISSUES
In this section we will describe some of the practical issues

when implementing the scheme described in the last section
in PyPy. In particular we will describe some of the problems
of integrating the various parts with each other.

The first integration problem is how to not integrate the
tracing JIT at all. It is possible to choose when the language
interpreter is translated to C whether the JIT should be built
in or not. If the JIT is not enabled, all the hints that are
possibly in the interpreter source are just ignored by the
translation process.

If the JIT is enabled, things are more interesting. At the
moment the JIT can only be enabled when translating the
interpreter to C, but we hope to lift that restriction in the
future. A classical tracing JIT will interpret the program it
is running until a hot loop is identified, at which point trac-
ing and ultimately assembler generation starts. The tracing
JIT in PyPy is operating on the language interpreter, which
is written in RPython. But RPython programs are statically
translatable to C anyway. This means that interpreting the
language interpreter before a hot loop is found is clearly not
desirable, since the overhead of this double-interpretation
would be significantly too big to be practical.

What is done instead is that the language interpreter
keeps running as a C program, until a hot loop in the user
program is found. To identify loops, the C version of the
language interpreter is generated in such a way that at the
place that corresponds to the can_enter_jit hint profil-
ing is performed using the program counter of the language
interpreter. Apart from this bit of profiling, the language
interpreter behaves in just the same way as without a JIT.

When a hot user loop is identified, tracing is started. The



tracing interpreter is invoked to start tracing the language
interpreter that is running the user program. Of course the
tracing interpreter cannot actually trace the execution of
the C representation of the language interpreter. Instead it
takes the state of the execution of the language interpreter
and starts tracing using a bytecode representation of the
language interpreter. That means there are two “versions”
of the language interpreter embedded in the final executable
of the VM: on the one hand it is there as executable machine
code, on the other hand as bytecode for the tracing inter-
preter. It also means that tracing is costly as it incurs a
double interpretation overhead.

From then on things proceed as described in Section 3.
The tracing interpreter tries to find a loop in the user pro-
gram, if it finds one it will produce machine code for that
loop and this machine code will be immediately executed.
The machine code is executed until a guard fails. Then the
execution should fall back to normal interpretation by the
language interpreter. This falling back is possibly a complex
process, since the guard failure can have occurred arbitrarily
deep in a helper function of the language interpreter, which
would make it hard to rebuild the state of the language inter-
preter and let it run from that point (e.g., this would involve
building a potentially deep C stack). Instead the falling back
is achieved by a special fallback interpreter which runs the
language interpreter and the user program from the point
of the guard failure. The fallback interpreter is essentially a
variant of the tracing interpreter that does not keep a trace.
The fallback interpreter runs until execution reaches a safe
point where it is easy to let the C version of the language
interpreter resume its operation.5 This means that the fall-
back interpreter executes at most one bytecode operation of
the language interpreter and then falls back to the C version
of the language interpreter. After this, the whole process of
profiling may start again.

Machine code production is done via a well-defined inter-
face to an assembler backend. This allows easy porting of the
tracing JIT to various architectures (including, we hope, to
virtual machines such as the JVM where our backend could
generate JVM bytecode at runtime). At the moment the
only implemented backend is a 32-bit Intel-x86 backend.

5. EVALUATION
In this section we evaluate the work done so far by looking

at some benchmarks. Since the work is not finished, these
can only be preliminary. Benchmarking was done on an
otherwise idle machine with a 1.4 GHz Pentium M processor
and 1 GB RAM, using Linux 2.6.27. All benchmarks where
run 50 times, each in a newly started process. The first run
was ignored. The final numbers were reached by computing
the average of all other runs, the confidence intervals were
computed using a 95% confidence level. All times include
running the tracer and producing machine code.

The first round of benchmarks (Figure 8) are timings of
the example interpreter given in Figure 2 computing the
square of 10000000 using the bytecode of Figure 3.6 The
results for various configurations are as follows:

Benchmark 1: The interpreter translated to C without
including a JIT compiler.

5This is the only reason for the jit_merge_point hint.
6The result will overflow, but for smaller numbers the run-
ning time is not long enough to sensibly measure it.

Time (ms) speedup
1 Compiled to C, no JIT 442.7 ± 3.4 1.00
2 Normal Trace Compilation 1518.7 ± 7.2 0.29
3 Unrolling of Interp. Loop 737.6 ± 7.9 0.60
4 JIT, Full Optimizations 156.2 ± 3.8 2.83
5 Profile Overhead 515.0 ± 7.2 0.86

Figure 8: Benchmark results of example interpreter
computing the square of 10000000

Benchmark 2: The tracing JIT is enabled, but no inter-
preter-specific hints are applied. This corresponds to the
trace in Figure 4. The threshold when to consider a loop to
be hot is 40 iterations. As expected, this is not faster than
the previous number. It is even quite a bit slower, proba-
bly due to the overheads, as well as non-optimal generated
machine code.

Benchmark 3: The tracing JIT is enabled and hints as
in Figure 5 are applied. This means that the interpreter loop
is unrolled so that it corresponds to the loop in the square
function. Constant folding of green variables is disabled,
therefore the resulting machine code corresponds to the trace
in Figure 6. This alone brings an improvement over the
previous case, but is still slower than pure interpretation.

Benchmark 4: Same as before, but with constant folding
enabled. This corresponds to the trace in Figure 7. This
speeds up the square function considerably, making it nearly
three times faster than the pure interpreter.

Benchmark 5: Same as before, but with the threshold
set so high that the tracer is never invoked. In this way the
overhead of the profiling is measured. For this interpreter
it seems to be rather large, with about 20% slowdown due
to profiling. This is because the interpreter is small and the
opcodes simple. For larger interpreters (e.g., PyPy’s Python
interpreter) the overhead will likely be less significant.

def f(a):
t = (1, 2, 3)
i = 0
while i < a:

t = (t[1], t[2], t[0])
i += t[0]

return i

Time (s) speedup
1 PyPy compiled to C, no JIT 23.44 ± 0.07 1.00
2 PyPy comp’d to C, with JIT 3.58 ± 0.05 6.54
3 CPython 2.5.2 4.96 ± 0.05 4.73
4 CPython 2.5.2 + Psyco 1.6 1.51 ± 0.05 15.57

Figure 9: Benchmarked function and results for the
Python interpreter running f(10000000)

To test the technique on a more realistic example, we did
some preliminary benchmarks with PyPy’s Python inter-
preter. The function we benchmarked as well as the results
can be seen in Figure 9. While the function may seem a
bit constructed, executing it is still non-trivial, as a normal
Python interpreter needs to dynamically dispatch nearly all
of the involved operations, like indexing into the tuple, addi-
tion and comparison of i. We benchmarked PyPy’s Python
interpreter with the JIT disabled, with the JIT enabled and



CPython7 2.5.2 (the reference implementation of Python).
In addition we benchmarked CPython using Psyco 1.6 [23],
a specializing JIT compiler for Python.

The results show that the tracing JIT speeds up the execu-
tion of this Python function significantly, even outperform-
ing CPython. To achieve this, the tracer traces through the
whole Python dispatching machinery, automatically inlin-
ing the relevant fast paths. However, the manually tuned
Psyco still performs a lot better than our prototype (al-
though it is interesting to note that Psyco improves the
speed of CPython by only a factor of 3.29 in this example,
while our tracing JIT improves PyPy by a factor of 6.54).

6. RELATED WORK
Applying a trace-based optimizer to an interpreter and

adding hints to help the tracer produce better results has
been tried before in the context of the DynamoRIO project
[27], which has been a great inspiration for our work. They
achieve the same unrolling of the interpreter loop so that the
unrolled version corresponds to the loops in the user pro-
gram. However the approach is greatly hindered by the fact
that they trace on the machine code level and thus have no
high-level information available about the interpreter. This
makes it necessary to add quite a large number of hints, be-
cause at the assembler level it is not really visible anymore
that e.g., a bytecode string is immutable. Also more ad-
vanced optimizations like allocation removal would not be
possible with that approach.

There are quite a number of approaches that try to mini-
mally enhance interpreters to generate code at runtime with-
out actually writing a native compiler by hand. The goal of
these is to get rid of dispatch overhead of typical interpreters
while retaining ease of implementation. Piumarta and Ric-
cardi [22] propose to copy fragments of the interpreter to-
gether for commonly occurring bytecode sequences to reduce
dispatch overhead. However, dispatching is still needed to
jump between such sequences and also when non-copyable
bytecodes occur. Ertl and Gregg [14] go further and get rid
of all dispatch overhead by stitching together the concate-
nated sequences by patching the copied machine code. Both
techniques can speed up interpreters which large dispatch
overhead a lot. However they will help less if the bytecodes
themselves do a lot of work (as is the case with Python [7])
and the dispatch overhead is lower. On the other hand, our
technique can do a better job by tracing inside the imple-
mentation of those bytecode and inlining common paths.

The standard approach for automatically producing a com-
piler for a programming language given an interpreter for it
is that of partial evaluation [15, 21]. Conceptually there are
some similarities to our work. In partial evaluation some ar-
guments of the interpreter function are known (static) while
the rest are unknown (dynamic). This separation of argu-
ments is related to our separation of variables into those that
should be part of the position key and the rest. In partial
evaluation all parts of the interpreter that rely only on static
arguments can be constant-folded so that only operations on
the dynamic arguments remain.

Classical partial evaluation has failed to be useful for dy-
namic language for much the same reasons why ahead-of-
time compilers cannot compile them to efficient code. If
the partial evaluator knows only the program it simply does

7http://python.org

not have enough information to produce good code. There-
fore some work has been done to do partial evaluation at
runtime. One of the earliest works on runtime specialisa-
tion is Tempo for C [11, 10]. However, it is essentially a
normal partial evaluator “packaged as a library”; decisions
about what can be specialised and how, are pre-determined.
Another work in this direction is DyC [19], another runtime
specializer for C. Both of these projects have a problem sim-
ilar to that of DynamoRIO. Targeting the C language makes
higher-level specialisation difficult.

There have been some attempts to do dynamic partial
evaluation, which is partial evaluation that defers partial
evaluation completely to runtime to make partial evaluation
more useful for dynamic languages. This concept was in-
troduced by Sullivan [26] who implemented it for a small
dynamic language based on lambda-calculus. It is also re-
lated to Psyco [23], a specializing JIT compiler for Python.
There is some work by one of the authors to implement a
dynamic partial evaluator for Prolog [3]. There are also ex-
periments within the PyPy project to use dynamic partial
evaluation for automatically generating JIT compilers out
of interpreters [25, 12]. So far those have not been as suc-
cessful as we would like and it seems likely that they will be
supplanted with the work on tracing JITs described here.

7. CONCLUSION AND NEXT STEPS
We have shown techniques for improving the results when

applying a tracing JIT to an interpreter. Our first bench-
marks indicate that these techniques work really well on
small interpreters and first experiments with PyPy’s Python
interpreter make it appear likely that they can be scaled up
to realistic examples.

A lot of work remains. We are working on two main op-
timizations at the moment. Those are:

Allocation Removal: A key optimization for making
the approach produce good code for more complex dynamic
language is to perform escape analysis on the loop operation
after tracing has been performed. In this way all objects that
are allocated during the loop and do not actually escape the
loop do not need to be allocated on the heap at all but can be
exploded into their respective fields. This is very helpful for
dynamic languages where primitive types are often boxed, as
the repeated allocation of intermediate results is very costly.

Optimizing Frame Objects: One problem with the
removal of allocations is that many dynamic languages are
so reflective that they allow the introspection of the frame
object that the interpreter uses to store local variables (e.g.,
SmallTalk, Python). This means that intermediate results
always escape because they are stored into the frame object,
rendering the allocation removal optimization ineffective. To
remedy this problem we make it possible to update the frame
object lazily only when it is actually accessed from outside
of the code generated by the JIT.

Eventually we will need to apply the JIT to the vari-
ous interpreters that are written in RPython to evaluate
how widely applicable the described techniques are. Possi-
ble targets for such an evaluation would be the SPy-VM, a
Smalltalk implementation [4]; a Prolog interpreter; PyGirl,
a Gameboy emulator [6]; and also not immediately obvious
ones, like Python’s regular expression engine.

If these experiments are successful we hope that we can
reach a point where it becomes unnecessary to write a lan-
guage specific JIT compiler and instead possible to just ap-



ply a couple of hints to the interpreter to get reasonably
good performance with relatively little effort.
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